
Addressing the Big-Earth-Data Variety Challenge
with the Hierarchical Triangular Mesh

Michael L. Rilee1,2, Kwo-Sen Kuo1,3,4
Thomas Clune1, Amidu Oloso1,5

1NASA GSFC, Greenbelt, MD, USA,
2Rilee Systems Technologies, Derwood, MD, USA

3Bayesics, LLC, Bowie, MD, USA
4University of Maryland, College Park, MD, USA

5SSAI, Greenbelt MD, USA
mike@rilee.net

{amidu.o.oloso, kwo-sen.kuo,
thomas.l.clune}@nasa.gov

Paul G. Brown
Paradigm4 Inc.

Waltham, MA, USA
pbrown@paradigm4.com

Hongfeng Yu

University of Nebraska, Lincoln, NE, USA
hfyu@unl.edu

Abstract—We have implemented an updated Hierarchical
Triangular Mesh (HTM) as the basis for a unified data model
and an indexing scheme for geoscience data to address the
variety challenge of Big Earth Data. We observe that, in the
absence of variety, the volume challenge of Big Data is
relatively easily addressable with parallel processing. The more
important challenge in achieving optimal value with a Big Data
solution for Earth Science (ES) data analysis, however, is being
able to achieve good scalability with variety. With HTM
unifying at least the three popular data models, i.e. Grid,
Swath, and Point, used by current ES data products, data
preparation time for integrative analysis of diverse datasets
can be drastically reduced and better variety scaling can be
achieved. In addition, since HTM is also an indexing scheme,
when it is used to index all ES datasets, data placement
alignment (or co-location) on the shared nothing architecture,
which most Big Data systems are based on, is guaranteed and
better performance is ensured. Moreover, our updated HTM
encoding turns most geospatial set operations into integer
interval operations, gaining further performance advantages.

Keywords-SciDB; HTM; array database; shared nothing
architecture; Big Data; variety; Earth Science; DAAC; remote
sensing; data analysis; data fusion; load balancing; co-
registration; quadtree; indexing; geographic metadata; GIS

I. INTRODUCTION
For a few decades now, the prevailing data practice in Earth
Science (ES) has followed a two-step approach: 1)
packaging data into files for archival and distribution and 2)
cataloging the metadata of the datasets and data files into
databases managed by relational database management
systems (RDBMSs), thus making data holdings discoverable
and searchable. The establishment of distributed active
archive centers (DAACs) as data warehouses and the
standardization of data file format through the HDF/netCDF
[1] Application Programming Interface (API) by NASA
Earth Observing System Data Information System (EOSDIS)
since the 1990s exemplify the apex of this approach. These
DAACs have since enjoyed much popularity. Consequently,

this approach has become the de facto standard paradigm and
has been adopted by other organizations.

Although this two-step approach has elevated the
convenience of finding, obtaining, and using data to
unprecedented heights, it has obviously reached its limit
when faced with today’s demands. Its limitation is a
consequence of the fact that users cannot access and
manipulate the data directly but have to work with and
through their containers (i.e., files) requiring specialized
expertise and resources beyond scientific analysis. This
approach has historically led inevitably to data download
(mostly through low-bandwidth Internet connections) and
integration for analysis by users. With few exceptions, it is
still largely practiced today with the same consequences.

Since, as a norm, users cannot access and analyze the
data “in place”, they must follow the FTP links that result
from the metadata search and proceed to download the data
files before analysis may commence. In preparation for the
download and subsequent analysis, however, users (or their
institutions) must first procure necessary compute and
storage resources and then address the associated cost of
management and maintenance. Moreover, researchers now
must also engage in data management activities, such as
organizing and backing up downloaded data. Then, they
have to familiarize themselves with the organization and
meanings of the data elements in the files. These activities,
irrelevant to research pursuits, unnecessarily encumber
researchers and distract them from their investigations,
hampering productivity. The most disheartening aspect of
this practice is perhaps the collective waste it causes because
almost every data analysis research endeavor needs to
duplicate the process and the resources it requires.

Once the downloaded data become “local” to individual
research users or institutions, their processing is subjected to
the preferences of these individuals (e.g., data management
policies or the choices of programming languages for data
analysis). The profusion of these preferences, in turn, erects

https://ntrs.nasa.gov/search.jsp?R=20160014543 2020-05-06T09:20:59+00:00Z

nearly insurmountable barriers against effective cross-
institution and/or cross-disciplinary collaborations. In
addition, since most geoscience researchers are not
professional software engineers and rarely follow good
software engineering practices, such as performing unit (and
other) tests and subjecting source code to version control,
software quality becomes suspect and research
reproducibility becomes illusive.

A. Volume vs. Variety
Since supercomputing centers have achieved remarkable

success in maximizing value for computer simulations, it is
natural that the first attempts to address the data analysis
challenges described above are to leverage the existing
supercomputing infrastructure and architectures. This
category of solutions is characterized mostly by moving the
data files to the dedicated, but expensive, file systems of the
supercomputing facilities, where computing resources are
readily available close to the data.

Although good scaling in volume can be achieved with
this approach, it is a very different story with variety. The
diverse variety of ES data arises mainly from the multiplicity
of observations. “In situ” and “remotely sensed” are the two
main categories of observational data. Remote sensing data
can again be categorized into ground-based (e.g., weather
radars), airborne, and space-based depending on the
instruments’ locations/positions relative to Earth’s surface.
The instruments used in remote sensing can also be divided
into passive sensors (e.g., radiometer and imager) and active
sensors (e.g., radar and lidar) according to their operation
modes. These instruments—in accordance with their
positions, purposes, requirements, and physical or practical
constraints—often utilize different sensing geometries and
observe with different resolutions, both spatially and
temporally. Further processing of these data generates even
greater varieties.

B. Variety’s Toll on Iterative Analysis
When an integrative analysis requiring diverse datasets

needs to be performed, the data preparation effort is not
substantially reduced even with the aforementioned
supercomputing solution with its nearby compute resource,
because each file in each variety has to be processed and
homogenized first before the integrative analysis can
continue. Unless the “fused” data of the integrative analysis
is saved, anyone who wishes to perform the same analysis
will have to repeat the entire, same data preparation process.
If a similar, but not exactly the same, integrative analysis
needs to be performed, e.g. using different spatiotemporal
subsets or with slightly different data products, data
preparation almost always has to be redone; results and
intermediate products from previous efforts can scarcely be
reused. Since scientific analysis is characterized by
continuous reanalysis, the costs of data preparation exert an
expensive toll at every iteration.

C. In-place analysis via Partition Placement Co-alignment
Big Data technologies help enable in-place analysis,
including the creation and sharing of data products, yet ES
data places special demands on computing architectures. In
geoscience data analysis, spatiotemporal coincidence is a
fundamental requirement. For example, when analyzing
cloud formation, we need other spatiotemporally coincident
information, such as temperature, pressure, humidity,
airflow, etc. Yet when distributed arrays of ES data with
misaligned partitions need to be analyzed together, the
analysis has to perform computationally expensive
repartitionings on the fly to move and align the data first [2],
degrading overall performance. When the placements of ES
data partitions are co-located on a shared-nothing
architecture (SNA), better overall performance can be
achieved. Currently this movement occurs when an end-user
integrates data on their own, incurring problems mentioned
previously. Partition Placement Co-alignment (PPC) is
required to realize in-place analysis on distributed
architectures, especially when data transfer and integration
is costly, further motivating SNA.

D. A Unifying Approach
We are developing an in-place analysis system for ES data
analysis and sharing. We are building on SciDB, an analysis
environment that scales to the massive, distributed, parallel
systems that are required to integrate and analyze diverse,
voluminous ES datasets [3,4]. SciDB is based on the SNA
which is exceptionally suited for pleasingly (aka
embarrassingly) parallel computations (i.e., distributed
parallel computations mostly exempt from inter-process
communication). Inter-process communication is
synonymous here to data movement, albeit movement within
the SNA cluster. The most ideal PPC strategy is thus one that
renders the greatest majority of analyses pleasingly parallel.
As mentioned above, SciDB also supports tightly-coupled
scientific calculations that are not pleasingly parallel.

Because they are fundamental to ES integration and
analysis, we are adding geometric functions to the SciDB
array database and scientific calculation platform [5]. We
build on the work of Szalay et al. who developed the
Hierarchical Triangular Mesh (HTM) and applied it to index
the Sloan Digital Sky Survey (SDSS) [6,7]. HTM’s efficient
indexing and fast integer representation provides a common
geographical reference for comparing and combining
different data sets. HTM's quad-tree-based indexing scheme

Figure 1. Three data models.

recursively subdivides triangles into four children by
bisecting the parent's edges, starting with a parent spherical
octahedron. This indexing scheme leads to an efficient
mapping of the sphere to integer intervals, which we then use
for indexing, search, intersection, conditional subsetting, co-
registration, regridding, among other tasks, including
critically, PPC for load balancing and minimizing data
transfers.
 In this work we describe a new “Left Justified” bit
format that is more appropriate to indexing and integrating
distributed ES data. We discuss how our new hierarchical
labeling is used for the efficient distribution of data across
computational nodes. Temporal indexing and other forms of
variety are important but relatively simpler due to its one-
dimensional nature and beyond the scope of this paper.

II. DEALING WITH DIVERSITY: POINT, SWATH, & GRID
The spatial aspect of geoscience data variety can generally
be represented by three data models with array as the data
structure: Grid, Swath, and Point (Fig. 1). Grid is a mesh
with fixed latitude and longitude spacing and thus a simple

linear relation exists between array indices and latitude-
longitude geolocation coordinates. Swath retains the
spaceborne instrument’s observation geometry (e.g., cross- ×
along-track), where no simple relation exists between array
indices and geolocations. Rather, geolocation is specified
individually for each Swath array element, i.e. Instantaneous
Filed of View (IFOV). The Point model is used mostly for in
situ observations made at irregularly distributed locations,
which are encased in a vector (1D array). Similar to Swath,
geolocation for each point is also specified individually. The
dissimilarities among these data models give rise to
difficulties in integrative analysis. For example, simply
determining the (approximate) common area covered by two
Swath arrays can become algorithmically involved,
especially if the swaths are from satellites with different orbit
characteristics.

These data models, however, have one commonality: data
values associated with geolocations, which can thus serve as
a basis for a unified data model. Indeed, at the heart of our
unified data model is an indexing scheme that essentially
assigns an “address” (index) to every surface element (up to
a desired resolution) of Earth (i.e., geolocation), e.g. Fig. 2.
When data are stored in arrays indexed by this address, it
allows quick retrieval of data values associated with any
given geolocation, regardless of their original data models. A
good index like HTM speeds the comparison and integration
of data with different geometries (Fig. 3).

III. HIERARCHICAL SPHERICAL TRIANGULAR MESH
Details about HTM indexing have been described elsewhere
[5-13]. The HTM is based on the recursive quadfurcation of
a root spherical octahedron, which is divided into South and
North halves labeled with a 0 and 1, respectively, Fig. 2. The
4 triangles of each half are labeled 0-3 starting from the
triangle nearest the x-axis proceeding counterclockwise
around the sphere as viewed from outside and above the
poles. At each following level of recursion, the 4 child
triangles constructed by adding a triangle connecting the
midpoints of an existing triangle's edges are labeled 0-3
according to order in which the parent's vertices are stored.

Figure 3. Finding spatial intersections using the HTM.

Figure 2. HTM: Projecting the octagon onto and
recursively partitioning the sphere into a quad-tree,
whose branches are labeled in binary.

The symbolic form of the HTM appends the label for

each level, with each digit describing how to traverse the
quad-tree structure from the root octahedron to the leaf
triangle. For example, the 2nd child (a grandchild) of the 1st
child of the first (0th) triangle counterclockwise from the x-
axis in the northern hemisphere would be denoted N012, a
level 2 triangle; examples of the symbolic labeling of
triangles is illustrated in Fig. 4.

Figure 4. The spherical triangles N0 (red), N01 (green), N012
(purple), N0123 (cyan).

A. Mapping HTM indices to integers
As pointed out by Gray, a triangle with an index contains all
of the points inside it, completely covering that triangle [8].
One can map HTM symbolic names, and hence the indexed
triangular regions, to integers in a number of ways. As can
be seen with the symbolic form described above, triangles
that share the same "prefix" are children of the triangle
denoted by that prefix. For example (Fig. 4), with their
shared prefix in boldface, the triangles

N0123123 and
N0123333

are both contained in the triangle

N0123.

Note that the triangles contained within a parent are readily
labeled using the parent's representation as a prefix. For
example all of the level 6 children of the level 3 triangle
N0123 are in the range

N0123000 - N0123333

without any gaps in the coverage. Regions on the sphere may
be approximated or covered by sets of these HTM indexed
triangles. When encoded as integers, contiguous sequences
of HTM indices corresponding to a geographical region can
be replaced by integer intervals, such as in the previous
example. Searching and geometric calculations such as
calculating intersections between datasets are made more
efficient by substituting integer operations for the floating-
point spherical trigonometry or 3D vector geometry
calculations. This dramatic reduction in computational effort
and storage enables the provision of detailed geometric
information as HTM geometric metadata, accelerating the
process of integrating different datasets. This is a crucial
reason why we are adding HTM support to SciDB.

B. Right Justified HTM integer index
The SDSS/HTM implementation used a straightforward

mapping from the symbolic representation mentioned above
to integers. In their representation, zero, 0x0 in hexadecimal,
is the invalid HTM index. For valid indices, a top or depth
bit was set and succeeding bits were set according to the
symbolic representation with S and N being represented by 0
and 1 respectively. With the prefix 0b indicating a binary
representation, we have the following example mappings of
the HTM symbols to integers. We call this a Right Justified
Mapping (RJM) or format.

S0123 -> 0b1000011011 = 0x21b = 539
N0123 -> 0b1100011011 = 0x31b = 795
S01230 -> 0b100001101100 = 0x86c = 2156

Figure 5. Triangles sharing a prefix are contained in the parent
with that prefix. Here N0123 (green) has children N0123123
(orange), and N0123333 (blue).

Unfortunately, RJM maps points in geometric proximity
(e.g. in the offspring triangles of the same parent) to
multiple, separated locations on the number line. Note that
geometrically S0123 (corresponding to the digital value 539
RJM) contains S01230 (2156 RJM), but that when mapped
to integers N0123 (795 RJM) it lies in between, even though
S0123 and S01230 share the same prefix to the 3rd level
(Figs. 5). Thus the correspondence between HTM regions
and RJM integer intervals holds only within the same HTM
index levels. Implementing geometric set operations, e.g.
intersection, under RJM is complicated by this one-to-many
mapping of the geometric points (in triangles) along the
number line. HTM indices in RJM at a given level form a
contiguous sequence of integers, but our diverse datasets
feature a wide range of spatial resolutions.

For example, a data set with 5-km footprints might be
well suited with level 11 HTM triangles, while a 150-km
footprint might get by with level 6. In most cases we are
more interested in groups of measurements, e.g. a swath of
data as opposed to individual measurements at the IFOV
level, for co-location and regridding over a geographic
region. Therefore we desire to use triangles from multiple
levels of HTM to more succinctly approximate and index
these regions. As with other adaptive gridding schemes, large
triangles in the interior of such regions are supplemented
with smaller triangles in the vicinity of the region's
boundary, leading to compact descriptions, all mapped to
integer intervals (Fig. 6).

Figure 6. Approximating a region with triangles at multiple
resolution levels.

C. Left Justified Integer Intervals
So far we have discussed integer intervals as an
optimization scheme for sets of HTM indices. We have
noted that some geometric set operations have analogous
integer operations, though complicated by the RJM
encoding. If indexing were our only goal, we could live with
RJM. But because we require a better correspondence
between HTM integers and geometry to support data
locality for distributed scientific analyses as well as for

efficient geometric metadata set operations, we thus must
revisit the HTM encoding.

A more convenient mapping to the integers indices that
allows other tools to take advantage of the HTM's geometry
using integer operations without necessarily falling back on
HTM's floating-point geometry, is to use a Left Justified
Mapping (LJM) bit format, instead of the RJM. In this
representation the above example becomes

S0123 -> 0b100001101100 = 0x86c = 2156
N0123 -> 0b110001101100 = 0xc6c = 3180
S01230 -> 0b100001101100 = 0x86c = 2156

using 12-bit words for clarity.

Now we see that the common HTM prefix is rendered
into the integers in the same way for different HTM levels,
so now geometric containment is respected by the mapping.
Unfortunately, as demonstrated in the above example, we
now have an aliasing problem, e.g. with S0123 and S01230,
in that the LJM has difficulty distinguishing between levels.
In other words, just how many bits from the left are
significant? For the RJM, the top or depth bit tells you both
the level of the HTM index and where the significant bits
start. To complete the LJM approach we need to do three
more things.

First, we need to keep track of the level. In a
programming environment like C++ we can merely keep
track of the level in another field in a struct or an object. But
since we are mapping to integer intervals so other tools may
readily take advantage of the implicit geometric encoding,
we must improve the mapping. For this discussion we
confine ourselves to 64 bit integers, moreover to signed 64
bit integers for technical reasons which may be relaxed if
needed. To track the quadfurcation level we devote the
rightmost (least significant) 6 bits, using the rightmost 5 for
the actual level number and the remaining bit (the 6th) in
reserve. We also reserve the leftmost bit for internal use and
set the remaining bits as in the left justified example above--
except we drop the top/depth bit as being unnecessary.

Table 1. Left Justified Mapping

Bit position Use
most significant

63
Reserved // Top Bit

62 North-South Bit
60..61 Octahedral triangle index

Resolution level 0
~10 km

6..59 Quadtree triangle index
Resolution levels 1-27
~5 km to ~7 cm

5 Reserved // Terminator Bit
0..4

least significant
Resolution level // Terminator

Thus the triangles from our previous example become:

S0123 -> 0x06c0000000000003
S01230 -> 0x06c0000000000004
N0123 -> 0x46c0000000000003

This almost gets us where we need to go. We can tell the
difference between S0123 and S01230 and integer
comparisons can tell us that the latter is contained in the
former, but cannot distinguish the reverse. Therefore the
inclusion of levels in the integers respects the underlying
geometric meaning of the HTM triangles.

Note that the difference between these integer
representations of S0123 and S01230 is merely the
difference in their resolution levels. Since the maximum
resolution level is 27 for our 64 bit integer encoding (see
Table 1 above), for any two HTM integers that differ by 27
or less, the triangle associated with the lesser will contain the
triangle associated with the greater. In fact, traversing
through the levels for these otherwise identical integers
corresponds to traversing a quad-tree by always choosing the
0th triangular partition at a particular resolution/quadfurcation
level. Next we deal with the integers that are greater than this
special sequence but less than the next indexed triangle at the
same quadfurcation level.

The second step is to understand how triangles of
different levels are interleaved in LJM and the role that
integer intervals play. There are natural upper and lower
bounds to the set of all labeled child triangles within a given
triangle. For the lower bound one merely takes the HTM
index of that given triangle as a prefix and then appends
zeros down to the maximum allowed resolution of the
representation (excluding the 6 bits reserved for the
quadfurcation level), i.e. one needn't change the current
representation. Consider the following consecutive level 3
triangles indexed and mapped as follows.

lower bound S0123 0x06c0000000000003
upper bound S0130 0x0700000000000003(faulty)

Ignoring the 6 bits reserved for the quadfurcation level, the
numbers between these two limits correspond to all of the
triangles in S0123, i.e. traversals of the HTM quadtree from
that triangle, representable in our 64 bit LJM. Using S0130
as an upper bound for triangles in S0123 is problematic,
because of the aliasing problem. For performance
considerations it is very desirable that integer order
operations, e.g. “<” or “<=”, could be made to stand in for
geometric intersection. However, special care must be taken
for the faulty upper boundary LJM representation above,
because one has valid HTM integers less than the upper
bound S0130 above, but still not in S0123, e.g. S013 at level
2. This complicates the code surrounding inclusion at the
upper bound, and we can do better.

Figure 7. The level 3 interval S0123..N0123 with multiple
triangles. Otherwise filled, the interval has a geometric hole,
the larger level 2 triangle N013 near the pole.

The third thing to do is thus to address the upper bound:

if we used the encoding scheme discussed above, drawing a
correspondence between integer interval operations and
geometric set operations becomes troublesome. Some of
these problems are lessened if we use the last, smallest
indexed triangle as the upper bound, which are as follows.

upper bound S0123 -> 0x06c3ffffffffffc3
upper bound S01230 -> 0x06c3ffffffffffc4

Where we have essentially selected the 3rd triangle at each
quadfurcation (adding ones at each bit position down to the
rightmost 6 bits). However, this representation again
confuses the logic associated with determining inclusion at
the upper bound. One could mask off the level bits or make
use of the unused 6th bit, but it is easier to introduce a
terminator for the interval by simply setting all bits to the
right of the significant HTM location bits to one. For a 6-bit
field, this corresponds to the number 63, 0x3F. Level
information is already contained in the lower bound for an
interval and is thus redundant in the upper bound. Therefore,
with intervals, the above examples become:

S0123 0x06c0000000000003-0x06c3ffffffffffff
S01230 0x06c0000000000004-0x06c3ffffffffffff
N0123 0x46c0000000000003-0x46c3ffffffffffff

With this mapping the integer interval mappings of all of the
triangles in S01230 fall within the interval
0x06c0000000000004-0x06c3ffffffffffff, and
intersections can be performed with integer operations.

If we were only dealing with individual triangles, we
needn't explicitly save the terminator along with the lower
bound, but the terminator is important when the interval is
for more than one triangle at a given level.

An example of an interval including multiple triangles at
the same level is

S0123-N0123

0x06c0000000000003-0x46c3ffffffffffff

corresponding to a complex region on the sphere (Fig. 7).
Note that all of these triangles in the interval are at the same
quadfurcation level. When triangles at different levels are
combined in one set of intervals, one must fix how one
handles areas of overlap. For our searching and co-
registration needs, subsuming higher resolution triangles into
overlapping lower resolution intervals is appropriate, though
it adds the complexity of having to edit the higher resolution
intervals when intersections occur when adding intervals. For
example, in Figs. 4 and 5 the smaller triangles would be
subsumed in their parents.

Figure 8. Simple automatic chunking based on HTM integer
intervals for different spatial distributions of data/work. Left:
homogeneous. Right: non-uniform. Different colors correspond
to different partitions and their placement.

The mapping from HTM to integer intervals described
above tends to map nearby portions of the sphere to nearby
portions of the number line. Since the indexing is based on a
quadratic tree, it is possible for neighboring leaf nodes
(triangles) to have no parent nodes in common, save for the
root. In this case, neighboring triangles (in a geometric
sense) could correspond to integers that are rather far apart
(in a numeric sense). This occurs, for example, at the
boundaries of the spherical triangles making up the root
octahedron. So whereas intersections are respected by the
mapping, finding geometric nearest-neighbors via integer
intervals is not trivial and is much easier using the quad-tree
traversal functions of HTM.

IV. APPLYING THE HTM ON SCIDB
The left justified interval mapping plays a critical role in
adding geospatial capabilities to SciDB. SciDB is based on a
distributed/parallel shared-nothing paradigm for its array
database functions as well as its MPI-based analysis
functions. Shared-nothing means that data is not redundantly
shared across the SciDB compute nodes and is not
communicated from node to node to the greatest extent
possible. The LJM provides a natural way to partition the
sphere and distribute data across computational nodes (Fig.
8). Once one constructs HTM index interval metadata for the

datasets of interest, we can then partition those intervals into
a new set that balances the amount of data across the
compute nodes. That is, each compute node is associated
with its own set of HTM index intervals, and hence
geometric region on the sphere. Consequently geometric
operations such as intersections on the data are balanced
across those nodes, communications are minimized because
geometrically local operations are kept local on the compute
nodes. This linkage of geometric and computational
partitioning is essential for realizing the goals of efficiently
using diverse, large scale Earth Science data in SciDB in
place.

We add our updated HTM to SciDB using its User
Defined Type and Function (UDT and UDF) facilities and
have constructed a preliminary HTM UDT verifying the
basic functionality of the type and related functions. Our
extension can construct the new left and the old right
justified mappings as well as the symbolic names of HTM
triangles for use as indexes in SciDB’s arrays.

The SDSS/HTM we have extended has an efficient and
fast skip list-based implementation of sets (called ranges in
the code) of HTM integer intervals for handling complex
geometric regions [14]. We are continually adding geometric
set operations so that we may eventually handle a broad
range of geographic regions. As these are integrated with
SciDB we will demonstrate and measure the performance of
HTM-enabled geometric functions on full scale Earth
Science data for our NASA-funded DERECHOS project,
which uses multiple sources of data to automatically identify
spatio-temporally extended weather events, starting with
blizzards.

At this point completing the integration of HTM with
SciDB is straightforward. More interesting are the
capabilities that will be demonstrated when we start to tag
Earth Science data with HTM ranges, sets (arrays in SciDB)
of our left justified integer intervals. This will allow us to
geometrically compare, co-register, and select diverse kinds
of data via metadata operations. The HTM gridding, as a
standardized intermediary, provides extra options for
quantitatively combining data.

Rather than depending on the assumptions made by
stovepiped producers of high-level gridded data products, a
researcher can work closer to the measurements and
uncertainties, with lower level data, relying on the HTM
indexing in the SciDB array database to help automate
handling the data's diverse geometries. We are also working
on a regridding capability in which the system uses the HTM
to construct grids adapted to the intrinsic geometry of the
data itself, whether gridded, unstructured, or swath, and then
provides the means to transform the data from one grid to
another. Researchers will be able to choose, according the
needs of their analysis, whether to regrid data to the grid
associated with a particular sensor or to a different grid not
associated with any particular data source. As an aside, the
triangles used in the HTM, being quasi-equiareal, do not
suffer the extreme singularities and distortions of the popular

lat-lon grids, yet we plan to take advantage of the Earth
Science community's support of a variety of grid geometries
(e.g. geodesic and CubeSphere grids) so that our HTM-based
functions help automate the interoperability of existing grids
and the data driven grids HTM enables.

SciDB provides a compute and storage paradigm better
suited to the large-scale distributed data intensive Earth
Science than the traditional 2-step of download and integrate,
even when supported by supercomputing centers. Its shared
nothing architecture limits costly data transfers and opens up
“in place” analysis and data sharing bypassing expensive
data preparation and integration. The new HTM with its left
justified bit format provides an efficient uniform geographic
platform for integrating diverse datasets, enables efficient
implementation of the shared nothing architecture via data
partition placement co-alignment, and provides a compact
representation for geographic metadata. Thus SciDB and the
new HTM point the way towards a data analysis
environment that scales to the current Big Earth Science
Data analysis variety challenge.

V. ACKNOWLEDGMENTS
Support for this work is primarily provided by the NASA
Earth Science Technology Office’s Advanced Information
System Technology program and partially by the National
Science Foundation’s EarthCube program.

REFERENCES
[1] The Network Common Data Form (NetCDF):

http://www.unidata.ucar.edu/software/netcdf/; The HDF
Group, Hierarchical Data Format:
http://www.unidata.ucar.edu/software/netcdf/

[2] Clune, T., K.-S. Kuo, K. Doan, and A. Oloso. 2015. "SciDB
versus Spark: A preliminary comparison based on an Earth
science use case," in AGU Fall Meeting, San Francisco,
California, 2015.

[3] SciDB by Paradigm4: www.paradigm4.com; J. Rogers et al.
Overview of SciDB: Large scale array storage, processing and
analysis. In SIGMOD, 2010.

[4] Brown, P. 2015. SciDB and Geoinformatics Analysis.
Geophysical Research Abstracts, Vol. 17, EGU2015-15102,
2015. EGU General Assembly 2015

[5] The Hierarchical Spherical Triangular Mesh (HSTM) website:
https://github.com/michaelleerilee/hstm

[6] Szalay, A.S., Gray, J., Fekete, G., Kunszt, P.Z., Kukol, P., and
Thakar, A. 2005. Indexing the Sphere with the Hierarchical
Triangular Mesh. Microsoft Research Technical Report,
MSR-TR-2005-123.

[7] The Sloan Digital Sky Survey and HTM websites:
http://skyserver.sdss.org/ and http://www.skyserver.org/htm/

[8] Gray, J., Szalay, A.S., Fekete, G., O’Mullane, W.,
Santisteban, M.A.N., Thakar, A., Heber, G., Rots, A.H. 2004.
There Goes the Neighborhood: Relational Algebra for Spatial
Data Search. Microsoft Research Technical Report, MSR-TR-
2004-32.

[9] Fekete, G., Kuo, K.-S. 2015. Indexing Earth with Trixels.
Poster presentation at the 8th XLDB Conference, May 19-20,
2015 Stanford University, CA, USA.

[10] Kunszt, P.Z., Szalay, A.S., Thakar, A.R. 2001. The
Hierarchical Triangular Mesh. In Mining the Sky:
Proceedings of the MPA/ESO/MPE Workshop held at
Garching, Berlin/Heidelberg, 2001, Ch. 83, p631.

[11] Barrett, P. 1994. Application of the Linear Quadtree to
Astronomical Databases, Poster at ADASS 1994.

[12] Fekete, G. 1990. Rendering and managing spherical data with
sphere quadtrees. Proc. of Visualization ’90. IEEE Computer
Society, Los Alamitos, CA. pp. 176-186.

[13] Crichton, D.J., Mattmann, C.A., Cinquini, L., Braverman, A.,
Waliser, D., Gunson, M., Hart, A.F., Goodale, C.E., Lean, P.,
and Kim, J. 2012. Sharing Satellite Observations with the
Climate-Modeling Community: Software and Architecture.
IEEE Software, September/October 2012, pp. 73-81.

[14] Pugh, William. 1990. Skip lists: a probabilistic alternative to
balanced trees in Communications of the ACM, June 1990,
33(6) 668-676.

